Parameterization of the statistical rate function

I. S. Towner and J. C. Hardy

In precision work with superallowed beta decay the integral over the phase space, customarily denoted as f, is required to be evaluated with an accuracy of 0.1%. For this, the electron wave function needs to be determined with comparable precision, which is accomplished [1] by solving the Dirac equation, exactly but numerically, for the emerging electron moving in the Coulomb field of the nuclear charge distribution. The full expression for the computation of f is

$$f = \xi R(W_0) \int_1^{W_0} p W(W_0 - W)^2 F(Z, W) f_1(W) Q(Z, W) r(Z, W) dW,$$
(1)

where *W* is the electron total energy in electron rest-mass units, W_0 is the maximum value of *W*, $p = (W^2 - 1)^{1/2}$ is the electron momentum, *Z* is the charge number of the daughter nucleus (positive for electron emission, negative for positron emission), F(Z, W) is the Fermi function and $f_1(W)$ is the shape-correction function as defined by Holstein [2] (but with kinematic recoil corrections omitted). Further, Q(Z, W) is a screening correction for which we use the analytic prescription of Rose [3] and r(Z, W) is an atomic overlap correction described in [4]. The kinematic recoil correction that Holstein includes in $f_1(W)$ is here written separately as $R(W_0)$:

$$R(W_0) = 1 - \frac{3W_0}{2M_A},\tag{2}$$

where M_A is the average of the initial and final nuclear masses expressed in electron rest-mass units. Last, for allowed transitions it is customary to remove from f the leading nuclear matrix element contained in the shape-correction function, $f_I(W)$. Thus we have introduced ξ in Eq. (1), where $\xi = 1/|\mathcal{M}_F|^2$ for superallowed Fermi transitions, \mathcal{M}_F being the Fermi matrix element. For pure Gamow-Teller transitions, $\xi = 1/|g_A \mathcal{M}_{GT}|^2$ with \mathcal{M}_{GT} being the Gamow-Teller matrix element and g_A the axialvector coupling constant.

Our goal is to parameterize f and present tables of the fitting parameters for transitions of interest. For this, we have computed f for 100 values of W_0 taken over a range of ± 60 keV around the transition Q-value. Our aim in fitting these 100 values is to achieve an accuracy of 0.01%, a factor of ten more precise than required. It is convenient to factor f into two contributions:

$$f = f_0 (1 + \delta_S), \tag{3}$$

$$f_0 = \int_1^{W_0} pW(W_0 - W)^2 F(Z, W) Q(Z, W) r(Z, W) dW,$$
(4)

$$\delta_S = (f - f_0)/f_0 \tag{5}$$

The purpose of the factorization is to place the role of the shape-correction function $f_I(W)$ entirely within the correction term δ_S , which is typically of the order of a few percent. The shape-correction function depends on nuclear matrix elements and differs for Fermi and Gamow-Teller transitions. So this piece of the calculation is somewhat less certain, being nuclear-structure dependent, but being small its accuracy is less critical.

For f_0 , we choose a fitting function with four parameters, a_0 , a_1 , a_2 and a_3 , of the same form as would be obtained analytically in the Z = 0 limit:

$$f_0 = a_0 W_0^4 p_0 + a_1 W_0^2 p_0 + a_2 p_0 + a_3 W_0 \ln(W_0 + p_0),$$
(6)

where $p_0 = (W_0^2 - 1)^{1/2}$. In fitting 100 values of f_0 it was found that four parameters could not be determined with the required accuracy. Thus it was decided to fix the coefficients of the two smallest terms, a_2 and a_3 , to their Z = 0 values, namely $a_2 = -2/15$ and $a_3 = 1/4$, and use the fitting to determine a_0 and a_1 . This procedure yielded the required accuracy.

For the correction δ_S we again choose a four-parameter fitting function:

$$\delta_S = b_0 + b_1 W_0 + \frac{b_2}{W_0} + b_3 W_0^2, \tag{7}$$

where, for a Fermi transition, approximate values of the coefficients can be derived from Holstein's expressions [2] for the shape-correction function $f_1(W)$: namely

$$b_0^F \simeq \frac{2}{5}R^2 + \frac{61}{630}(\alpha Z)^2,$$

$$b_1^F \simeq -\frac{6}{7}(\alpha Z)R - \frac{3}{2M_A},$$

$$b_2^F \simeq -\frac{9}{7}(\alpha Z)R,$$

$$b_3^F \simeq -\frac{1}{7}R^2,$$
(8)

where *R* is the nuclear radius in electron Compton-wavelength units. The exactly computed value of δ_s in Eq. (5) is fitted by the expression in Eq. (7) to obtain parameters b_0 , b_1 , b_2 and b_3 . Again, it was found that four parameters could not be determined with the required accuracy. So coefficients b_2 and b_3 were fixed at the values given in Eq. (8) and the fitting used to determine b_0 and b_1 .

For Gamow-Teller transitions, approximate expressions for the fitting parameters were derived in Towner's report for the summer of 2013 [5] and are

$$b_0^{GT} \simeq \frac{2}{15} R^2 + \frac{1}{15} R^2 x + \frac{1}{3} \beta(\alpha Z) \left[\pm 2\bar{b} + \bar{d} \right] + \frac{61}{630} (\alpha Z)^2,$$

$$b_1^{GT} \simeq -\frac{26}{35} (\alpha Z) R - \frac{1}{35} (\alpha Z) R x + \frac{1}{3} R \bar{d} - \frac{3}{2M_A},$$

$$b_2^{GT} \simeq -\frac{9}{7} (\alpha Z) R - \frac{5}{6} R \left[\pm 2\bar{b} + \bar{d} \right],$$

$$b_3^{GT} \simeq -\frac{11}{105} R^2 \left(1 + \frac{1}{11} x \right), \tag{9}$$

where

$$x = -\sqrt{10} \mathcal{M}_{1y} / \mathcal{M}_{\sigma r^2}, \tag{10}$$

$$\bar{b} = \frac{1}{MR} \left[\frac{g_M}{g_A} + \frac{\mathcal{M}_L}{\mathcal{M}_{GT}} \right],\tag{11}$$

$$\bar{d} = \frac{1}{MR} \frac{\mathcal{M}_{\sigma L}}{\mathcal{M}_{GT}},\tag{12}$$

and $\beta \simeq 6/5$, $g_M = 4.706$ and M the nucleon mass in electron rest-mass units. The nuclear matrix elements are defined in Eq. (68) of [2]. Schematically, they are written: $\mathcal{M}_{GT} = \langle \sigma \rangle$, $\mathcal{M}_{\sigma r^2} = \langle r^2 \sigma \rangle$, $\mathcal{M}_{1y} = (16\pi/5)^{1/2} \langle r^2 [Y_2 \times \sigma] \rangle$, $\mathcal{M}_L = \langle L \rangle$ and $\mathcal{M}_{\sigma L} = \langle \sigma \times L \rangle$. Note that the matrix element $\mathcal{M}_{\sigma L}$, and hence \bar{d} , vanishes in diagonal matrix elements as would occur in a mirror transition between isobaric analogue states.

Again in fitting exact values of δ_s with the expression Eq. (7) parameters b_2 and b_3 were held fixed at values given in Eq. (9) and parameters b_0 and b_1 varied in the fit. Tables of the fitted parameters for the superallowed Fermi transitions and for mixed Fermi and Gamow-Teller transitions that occur in mirror transitions between isospin T = 1/2 analogue states are given in Towner's summer report [5]and will be published.

- [1] J.C. Hardy and I.S. Towner, Phys. Rev. C 71, 055501 (2005).
- [2] B.R. Holstein, Rev. Mod. Phys. 46, 789 (1974); erratum, Rev. Mod. Phys. 48, 673 (1976).
- [3] M.E. Rose, Phys. Rev. 49, 727 (1936).
- [4] J.C. Hardy and I.S. Towner, Phys. Rev. C 79, 055502 (2009).
- [5] I.S. Towner, Parameterizations useful in nuclear beta decay, private communication.